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BLENDINGMETHODOLOGYOFLINEAR PARAMETERVARYING CONTROL
SYNTHESISOF F-16AIRCRAFT SYSTEM

JONG-YEOBSHIN*,GARYJ.BALASf,ANDALPAYM.KAYA$

Abstract. Thispaperpresentsthedesignofa linearparametervarying(LPV)controllerfortheF-16
longitudinalaxesovertheentireflightenvelopeusingablendingmethodologywhichletsanLPVcontroller
preserveperformancelevelovereachparametersubspaceandreducescomputationalcostsforsynthesizing
anLPVcontroller.ThreeblendingLPVcontrollersynthesismethodologiesareappliedto controlF-16
longitudinalaxes.Usingafunctionsubstitutionmethod,aquasi-LPVmodeloftheF-16longitudinalaxes
isconstructedfromthenonlinearequationsofmotionovertheentireflightenvelope,includingnon-trim
regions,to facilitatesynthesisof LPVcontrollersfortheF-16aircraft.Thenonlinearsimulationsof the
blendedLPVcontrollershowthatthedesiredperformanceandrobustnessobjectivesareachievedacrossall
altitudevariations.

Key words.LPVcontrolsynthesis,F-16longitudinalaxes

Subjectclassification.GuidanceandControl

Nomenclature.
m, Iy_ : Mass (slug), Inertial moments (slug ft 2)

V, _ : Velocity (ft see-l), Dynamic pressure (psi)

a, q : Angle of attack (rad), Pitch rate (rad see -1)

0, 7 : Pitch angle (rad), Flight path angle (rad)

(_c, T : Elevator deflection (rad), Thrust (lb)

c, S : Chord length (ft), Reference area (ft 2)

X_c, X<g : Aerodynamic center position (ft), Center of gravity position (ft)

Cx, Cz : X and Z force aerodynamic coefficients

Cxq, Czq : Aerodynamic stability derivatives

C,,_o : Pitch moment aerodynamic coefficient

Crnq : Pitch moment aerodynamic stability derivative

1. Introduction. Extensive researches have focused over the last ten years on developing analysis

and synthesis techniques for gain-scheduled controllers for linear parameter varying (LPV) systems [13, 12,

17, 6, 2, 15]. In Ref. [13, 12], conditions are given which guarantee stability, robustness, and performance

properties of the global gain-scheduled designs. Recent theoretical developments have produced methods

for synthesizing gain-scheduling controllers for LPV systems, which guarantee a level of robust stability

and performance across scheduling parameter spaces [6, 2, 15]. In Ref. [2], LPV control synthesis methods

have also been developed using parameter-dependent Lyapunov functions to lead to a less conservative

result. This gain-scheduling approach has been successfully applied to synthesize controllers for pitch-axis
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missile autopilots [3, 11], F-14 aircraft lateral-directional axis during powered approach [4, 5], and turbofan

engines [8].

One of the potential difficulties in practical uses of the LPV synthesis methodology with parameter-

dependent Lyapunov functions is that the complexity of the linear matrix inequality (LMI) optimization

problem increases exponentially with the number of scheduling parameters and the number of the grid

points over the scheduling parameter spaces. One approach to facilitate practical use of LPV synthesis

methodology, denoted as the "blending approach", has been discussed in Ref. [15, 14]. This approach to

control design partitions the full parameter space into overlapping small subspaces. An LPV controller is

synthesized for each small region. These regional controllers are blended into a single LPV controller for the

entire parameter space. In this paper, this blending approach is applied to control F-16 longitudinal axes

over the entire flight envelope.

To synthesize an LPV controller for an F-16 aircraft, an LPV model of the aircraft dynamics is required.

Conventional approaches to generate an LPV model of an aircraft are based on Jacobian linearizations at

trim points or a change of state coordinates [11] to reduce the nonlinearity of aircraft dynamics. The LPV

models constructed by both approaches can present aircraft dynamics at trim conditions. However, the

models can not represent aircraft dynamics at non-trim conditions. Instead of using Jacobian linearization

or state transformation, the nonlinear terms of aircraft dynamics can be substituted for other functions in

quasi-LPV form [18, 19]. This function substitution approach can be applied for both trim and non-trim

conditions. The approach has been used in generating a quasi-LPV model of a generic missile [18, 19]. In

this paper, a quasi-LPV model of F-16 longitudinal axes is provided over the entire flight envelope including

non-trim regions, using a function substitution approach.

In Section 2, a brief summary of conventional LPV controller synthesis used in this paper is presented

to emphasize the complexity of the LMI optimizations. In Section 3, three blending LPV control synthesis

methodologies are presented. Development of a quasi-LPV model of F-16 longitudinal axes is presented in

Section 4. In Section 5, formulation of the LPV control problem and the blending of two LPV controllers of

the F-16 aircraft are presented. Nonlinear simulations of the closed-loop system with the blended controller

are presented in Section 6 and this paper concludes with a brief summary in Section 7.

2. LPV Control Synthesis. In this section, a conventional LPV control synthesis using parameter-

dependent Lyapunov functions[2] is briefly described. Consider a generalized linear open-loop system as

functions of parameters p(t) E 72. For a compact subset 72 C /_*, the parameter variation set denotes the

set of all piecewise continuous functions mapping R (time) into 72 with a finite number of discontinuities in

any interval, where s is the number of parameters. An LPV open-loop system can be written as

_(t) / =/o_(_(t)) 0
_j(t).J LO2(,o(t)) D2,(p(t)) L_(t)J

(2.1)

where fl(t), e(t), d(t) and u(t) are measurements, errors, disturbances, and control signals. Hereafter, p

denotes p(t). The induced L_2 norm of d to e is defined as

Ilell2
sup

p_v,d_e2,11<12#011_112

In a conventional LPV synthesis methodology, suppose there is an LPV output feedback controller K(p)

which stabilizes the closed-loop system exponentially and makes the induced £2-norm of d to e less than 7.



The controller K(p) can be written as

[Ok(p) Dk(p)J

An LPV controller K(p) can be constructed from solutions of X(p) and Y(p) of the following optimization

problem [2]:

rain 3' (2.3)
X,yET_ r_ xr,

subject to

X(R)AT(R)q - _i(p).¥ (p) -- E(/]i_)--i1 J_2(P)J_T(P) "Y(p)CT(p) '_/-1_ I(p)

CXl (p)X(p) --ZlSel

_-_BT(p) o -z,$d J

< 0, (2.4)

8 7

,_(p)y(p) + y(p)_T(p) + E(t,i_ ) _ CT(p)C2(p) Y(p)Bn(p) 7-1CT(p)
i 1

BT(p)Y(p) --_,ldl 0

.r- _c_ (p) o - L_

< o, (2._)

X(p) _-%_]
__z,_ Y(p) J _>o, (2.6)

x(p) > o, Y(p) > o,

where

J(p) - A(p) - B2(p)C12(p), fl(p) - A(p) - B12(p)C2(p), (2.7)

and n is the number of states of the generalized open-loop system. The detailed definitions of matrices

Cll (p), C12 (p), and J_ll (P) cc%n be found in Ref. [2]. Note that _ E_ indicates that every combination of _
i 1

and ui is included in the LMIs. The parameter rate p is bounded as _ui _</_i _< ui.

A method to construct an LPV controller K(p) from the solutions X(p) and Y(p) is taken from Ref. [2].

In this paper, an LPV controller is constructed as [2]:

Ak (p) = A(p) +/32 (p)F(p) + Q-1 (p)y (p)L(p)C2 (p) - 7-2Q -1 (p)M(p, P), (2.8)

J_k (P) = -- Q--1 (p) y (fl) L (fl), (2.9)

Ck (p) = F(p), (2.10)

Dk(p) = 0, (2.11)

where matrices Q(p), F(p), L(p), and M(p,_b) are defined as

Q(p) = Y(fl) - ,y-2x-l(fl),

F(R) = -[BT(p)X -1 (p) + DT2(p)C1 (p)],

L(R) = -[y-1 (p)C f (p) + B1 (R)DTI(R)],

M(p, [_) = H(p,/)) + 72 Q(p)[_Q-1 (p)Y(p)L(p)D21 (p) - B1 (p)]B T (p)X -1 (p).



MatrixH(p, fl) is defined as

H(p,l_ ) : -[X-I(R)AF(p) + AF(R)Tx-I(p) + tPioTpi ;
i 1

-}- Cf (p)C F (p) -}- '_-2X-1 (jo) J_ 1 (P)J_l (p)T X-1 (P)]

with AF (p) = A(p)+ B2 (p)F(p) and CF (p) = Cs (p) + Ds2 (p)F(p). The closed-loop system with the controller

K(p) is exponentially stable and the induced £2 norm is less than % The proof can be found in Ref. [2].

To make the optimization problem of equation (2.3) computationally tractable, the scheduling param-

eters p are discretized into grid points. Thus, an infinite number of constraints are represented by a finite

number of LMI constraints. Also, X(p) and Y(p) are represented by a finite number of basis functions h,(p)

and gi(P):

Nx Ny

x(p) = Zh (p)X, Y(p) = Zg (p)Y ,
iX il

where hi(p) and 9i(P) are continuously differentiable functions. The LMIs of equations (2.4)-(2.6) are solved

for all grid points of the scheduling parameters simultaneously. The size of the optimization problem is

proportional to 2*+lNg where s and Ny are the number of scheduling parameters and total number of grid

points over the scheduling parameter space. The number of decision variables are (N, + ?v_),¢(,_+s) , where

N,, Ny and n are the order of basis functions of X and Y, and the state order. Thus, computational time

to solve the optimization problem of equation (2.3) is dependent on the number of grid points of scheduling

parameters, the state order of a generalized open-loop system, and basis function orders. The conventional

LPV synthesis methodology may require expensive computational cost (computational time and computer

memory) when number of scheduling parameters increases. In the next section, a blending method to reduce

the computational cost to synthesize an LPV controller and to preserve performance level over parameter

subspaces is presented.

3. LPV Controller Blending Approach. Instead of designing a single LPV controller for the entire

parameter set in a conventional LPV synthesis, LPV controllers can be synthesized for parameter subsets,

which are overlapped with each other. Then, these LPV controllers are blended into a single LPV controller

over the entire parameter set. Thus, the performance of the closed-loop system with the blended controller

is preserved when parameter trajectories travel over the overlapped parameter subsets.

Consider the scheduling parameter vector p E P which consists of subvectors p, E P, and Pd C Pd- The

parameter subset P, can be partitioned into two subsets with the following conditions:

_SKI = _K)81 _ /r_82' (3.1)

_8 = _K)81 U /r_82, (3.2)

Suppose that there exist LPV controllers /{-1 and K2 constructed from parameter-dependent Lyapunov

functions of a parameter subvector Pa, over each parameter subset P,_ U Pd, i = 1, 2. Thus, Xi and Y/

are functions of Pd (not p,) over each parameter subset P,_ U Pd,i = 1, 2. Also, the controller Ki can

stabilize the closed-loop system and the induced-£2 norm of the closed-loop system is less than 7i over each

parameter subset P_ U P_l.

When a scheduling parameter subvector p, is in the intersection subset P,_, LMI solution matrices

Xi(Pd) and Y/(Pa) are combined into Xb(p,,pa) and Yb(P,,Pa), respectively. There are three methods to



calculateXb(p,,pd) and Yb(P,,Pa), which will be explained later. The blended matrices Xb(p,,pd) and

Yb(P,,Pd) should be feasible solutions of the LMI constraints of equations (2.4)-(2.5) over the parameter

subset 7,*n O 7,d- When the parameter subvector p, is in the parameter subset 7,,i - 7,,n, Xb(p,,pd) and
• OXb OY,o

}b(Ps,Pd) should be equal to Xi(pd) and Yi(Pd), respectively, and the partial derivatives of _ and _7-
OXi OY_

should be equal to _7- and _p-, respectively. There are three blending methods for Xb and Yb to satisfy
the feasibility condition and the boundary conditions.

For method I, matrices Xb(p,, Pd) and Yb(P,, Pal) can be written as:

2

Xb(p,, Pd) = Z b,, (p,)Xi(Pd), (3.3)
i 1

2

Yb(P,,Pd) = Z byi(p,)Yi(Pd), (3.4)
i 1

where "blending functions" bx_(p,) and bw (p,) are differentiable scalar functions. To satisfy the boundary

conditions of Xb and Yb, blending functions b_ (p,) and by_(p,) are defined as:

Ob_(p,) Obw(p, )- 0, - 0, p, c - (3.r)
Op, Op,

Suppose that the blending functions bx_ (p,) and bw (p,) satisfy the following conditions:

2

Ebx_(p,) = 1, 0 < b_:_(p,) < 1, p, E 7,,_, (3.8)
i 1

2

Zbu_(p,)= l, O<_bw(p,) <_l, p, ET,,_, (3.9)
i 1

and 7 is chosen as max(%,72 ). Then, the following equations are satisfied, since the LMIs of equations

(2.4)-(2.5) are convex with respect to X and Y. Hereafter, p dependence is omitted for convenience.

s 2

x 7, + - Z b,, oxj
_Tpi ) -- J_2J_ r _- xbCT Cll Xb _- :/-'2 J_l J_r < O, (3.10)

il jl

-4Yb -_-}TbfflT +i_l(p_i_bvjopi).. --cTc2+YbBlsBTyb +7-'2cTcs <o. (3.11)

When the derivatives of blending functions 0bxl (p,) and Oby_(p,)
_PT, _77 are small enough to satisfy the following

inequalities,

(7 (12 /'ObxJ(Ps)})<o-(_lx),_il(lyi jIE Xj(p) Opi (3.12)

_ u__ Ys(P) Op_ <-_(_/&)' (3.13)
i 1 j 1



it is obviously noted that the blended Xb(p,, Pd) and Yb(P,, Pa) can be feasible solutions of LMIs of equations

(2.4)-(2.6) over the parameter subset P,n, where matrices 3�ix and 3/Iy are defined as

Here,

I is:

, 2 025
_/Ix _--XbAT _- AXb - E (l]i E bxj _Tpi ) - I_2BT -}- XbCTllCllXb _- _--2J_IBT'

il jl

, 2 b OYj
]_irY --*4Yb q- Ybff_T q- E (p-i E YJ _pi ) -- CT2 C2 q- YbBllBTyb -- _-2C1TCl"

il jl

and cr represent the maximum and the minimum singular values, respectively.

The procedure of designing an LPV controller over the entire parameter set using this blending method

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for Xi(pd) and Y_(Pd) over each parameter subset.

3. Define blending scalar functions bx_ (p,) and by_ (p,) which satisfy the boundary conditions of equa-

tions (3.5)-(3.7) and the derivative conditions of equations (3.12)-(3.13). Note that the derivative

conditions are sufficient for xb(p,, pd) and }},(p,, Pa) to be feasible solutions of the LMI constraints

of equations (2.4)-(2.5) over the parameter subset P,_ U Pd. A controller designer chooses candidate

blending functions until the feasibility conditions of equations (2.4)-(2.5) are satisfied.

4. Construct an LPV controller over the entire parameter set 79, U 7)a using equations (2.8)-(2.11), fl'om

the calculated Xb and Yb of equations (3.3)-(3.4).

For method II, an alternative way to calculate the blended matrices X(p,, Pd) and Y(p,, Pd) as feasible

solutions of the LMIs of equations (2.4)-(2.6) is adding extra LMIs in conventional LPV synthesis with

candidate blending functions [2]. The extra LMIs are:

bxjXjfftT _-A ba, jXj_-E(l]i_piEbxjXj)-_2BT EbxjXjCTll ,)/-1_ 1

jl jl il jl jl

2

Cll EbxjX j -L_el 0

) 1

7-1B T 0 -- g_a

< 0, (3.14)

, 2 2

" 2 2 0 E byj_'j) - cTc2 E bYJ}ZJJ_ll

jl jl il t*Zjl jl

2

BT1EbyjYj -Ina,

j 1

7-sCs 0

0
< 0. (3.15)

The procedure of designing an LPV controller over the entire parameter set using this blending method

II is:

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for the solution matrices Xs (Pa) and Y1 (Pa) over one

of parameter subsets, which is denoted by 7)** U pd.

3. Define blending scalar functions b_ (p,) and by_ (p,) which satisfy the boundary conditions of equa-

tions (3.5)-(3.7).



4. Solve the LMI optimization problem of equation (2.3) with the extra LMI constraints of equa-

tions (3.14)-(3.15) for the solution matrices X2(pd) and Y2(Pd) over the other parameter subset

P,2 U Pd-

5. Construct an LPV controller over the entire parameter set using equations (2.8)-(2.11) with the Xb

and Ybcalculatedusing equations (3.3)-(3.4).
The LMI optimization over the second parameter subset/_,= U/)d is related with the solution matrices Xs

and Ys over the first parameter subset P,1 U Pd. Thus, defining the order of parameter subsets may affect

the designed LPV controller over the entire parameter set.

Both methods I and II require appropriate blending functions to blend solution matrices over the param-

eter subset P,n. Note that an LPV controller provided by the blending methods I and II changes dependently

on which blending functions are selected. It is unknown how this affects the closed-loop performance of the

designed LPV controller.

For method III, blending matrix functions are calculated to minimize the induced 122 norm 7 over the

parameter subset P,n U/)d- The blended solution matrices Xv and Yb are rewritten as:

1 X 1 X
Xb(p,,pd) = 5[ bl(Ps)Xl(pd) q-Xl(pd)Xbl(Ps)] q- 5[ _b=(p,)X2(pd) + X2(Pd)Xb:(p,)], (3.16)

Yb(P,,Pd) = 2[Ybl(P,)YI(Pd) + Ys(Pd)Yb_(P,)] + 2[Yb_(P,)Y'2(Rd) + Y2(Rd)Yb_(P,)], (3.17)

where "blending matrix functions" Xbl (Ps), Xb2 (P,), Ybl (PS), and Yb=(P,) are differentiable symmetric matrix

functions bounded over the parameter subset 79_n. To present the blending matrix functions, basis functions

g,_ (P,), h,j (p,), gyj (P,), and hvj (p,) fox' Xv, (p,), Xo2 (p,), Yv, (P_), and ]_;_ (p,) are introduced, respectively.

To satisfy the boundary condition of blended matrices Xb(p,, Pd) and Y'b(P,, Pd), Xbl (p,), Xb_ (p,), "_Tb1 (PS),

and _ "'zb_tp,) are defined as:

Nxg

j 1

Nyg

>o,(v,) = v_0(p,)I + _ v_ (p,)Y%,
j 1

where

g_o(p,) = 1, h_,(p,) = o,

hxo(p,) = 1, gx,(p,) = O,

g_o(p_)= 1, h_, (p_) = o,

h_0(p_) = 1, g_, (p_) = o,

Nx h

Xb_ (p,) = hxo (p_)I + E hx, (p,)Xb2,, (3.18)
j 1

N,h

Yb:(P,) = t%o(p,)I + E t% (P,)Yb:,, (3.19)
j 1

_p_ - 5p,_ - O,

Og_ (p,) _ Ohm, (p,) _ O,
_p,_ 5p,_
Og_, (p_) _ Oh_ (p_)
_Op_ _ - O,
og_,(p_) _ oh_ (p_)
_p_ _ - O,

(3.20)

Here, the basis functions are differentiable over the parameter subset P,_ and Xbxj, Xb2_, Ybl_, and 1%_

are unknown constant matrices in 5g'_×'_. The unknown constant matrices can be determined solving the

following LMI optimization:

min "7, (3.21)
Xblj ' Xb2j ' _blj ' _b2j _]_nXn



XbA T + ,_Xb - 2_._ _-p ) -
i 1

CnXb -G_I 0

L "y-IB_ 0 -Gd

< 0, (3.22)

i4_b __ }_bAT jr_<(l]i_pi) _ C.T2C2 ]j,,oBll ,)/- r

Br]f b -- J(/)_ d 1

_/-1C1 0 -/,_ J

< 0, (3.23)

where

The

III is:

Xb "/-lIn] > O, Xb > _-b _"
O, O,

.y-lf,_ rb J-
(3.24)

Xb = g_oX1 + h_oX2 + 0.5

Yb = guoY1 + buoY2 + 0.5

Nx9 Neh I
k 1

_j_l gyj[}l_-blj Jr- _bljY1]--ZhYk[]<2_b2kk 1 _- _b2/_]ff"2] "

procedure of designing an LPV controller over the entire

(3.2_)

parameter set using this blending method

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for Xdp ) and Y_(p) over each parameter subset.

3. Define basis functions for blending matrix functions in equations (3.18) and (3.19), which satisfy the

boundary conditions of equation (3.20) over each parameter subset.

4. Solve the LMI optimization of equation (3.21) over the parameter subset P_ U Pd.

5. Construct solution matrices X and Y over the entire parameter set using the solution matrices Xx,

X2, }_, Y'2, Xb, and Yb.

6. Construct an LPV controller over the entire parameter set using equations (2.8)-(2.11) based on

solution matrices X and Y generated in step 5.

In this section, there were described three methods to calculate the blended solution matrices Xb (p_, Pa)

and Ya(P_, Pd) which are feasible solutions of LMIs of equations (2.4)-(2.5) over the parameter subset P_ UPon.

Since all three methods keep X1 and I/1 over the parameter subset T_ - P_, the blended LPV controllers

generated by the three methods are equal to the regionally designed LPV controller K1 over the parameter

subset T_ - T_. Both methods I and III can, also, keep the regional LPV controller K2 over the parameter

subset P_ - P_.

The disadvantage of method I is that choosing blending functions is in an ad-hoc manner. However,

method I is the fastest to synthesize an LPV controller over the entire parameter set among the three blending

methods. In method II, the blending solution matrices Xb and }50 are guaranteed to be feasible solutions

over the parameter subset P_. This method II requires solving the LMI optimization with the extra LMI

constraints. In method III, optimal blending matrix functions are calculated to minimize the induced £2

norm -y over the parameter set P_, based on basis functions defined by a controller designer. It is unknown

how the basis functions affect the blending matrix functions and the LPV control design.



4. Quasi-LPVModel of F-16 Longitudinal Axes. In this section, a quasi-LPV model of F-16

longitudinal axes is presented. The full nonlinear equations of an F-16A aircraft are taken from Ref. [1].

The nonlinear equations of F-16 longitudinal axes [1] are

_S sin a
f" - qS c°s _ [Cx (_,_e),, + _Cxq (a)q] + --[Cz(_,_e)_ + _TCz_ (_)q]

- g sin(0 - a) + Tcos a, (4.1)

& _ g cos(0 - a) sin a tiS_ rC
v _VUosgT + [1+ _ zq(_) cos _ - Cx_(_) sin _)]q

_S [C_(_, _) cos_ - c_(_, _) sins], (4.2)
+_

qS_ (C,_o (a, (_) + A Cz(a)), (4.3)_s_ (_c,._(_) + _xcz_(_))q + _4- 2I_v

0 = q. (4.4)

Velocity (V, ft/sec), angle of attack (a, rad), pitch rate (q, rad/sec), and pitch angle (0, rad) are the state

variables and thrust (T, lb) and elevator deflection ((_, rad) are the control variables. The aerodynamic

coefficients are lookup tables based on wind-tunnel data from NASA-Langley wind-tunnel tests on an F-16

aircraft scaled model [16]. The aerodynamic data were valid for a speed range of 100 _< V _< 900 ft/sec,

an angle of attack range of -10 ° _< a _< 45 °, and an altitude range of 5000 < h < 40000 ft. These three

parameters are scheduling parameters in the quasi-LPV model derived for the F-16 longitudinal axes. Note

that V and a are both scheduling parameters and states and h is a scheduling parameter which enters

implicitly into the nonlinear dynamics.

Unfortunately, the control variable 6_ does not enter affinely in equations (4.1)-(4.3). To derive a quasi-

LPV model of F-16 longitudinal axes, it is necessary that all controls be in atIine form. This is achieved

by transforming ((_, T) into synthetic inputs u_ = [u_ _u2]T. For details of the transformation, readers are

referred to Ref. [1@ For the F-16 quasi-LPV model, cos0 and sin0 are linearized about a trim value 0o.

After tedious algebraic manipulations, equations (4.1)-(4.4) are rewritten as

= A(V, c_,h)x + M(I/, c_, h)'u_ + f(V, a, h), (4.5)

x- [V a q 0- 0o] T,

where the elements of matrices A E _4×4 M C _4×2, and f C _4xl are written in Appendix A.

Using the flmction substitution method [18, 19], the nonlinear function f(V, a, h) can be decomposed

into quasi-linear functions G(V, a, h)[V - Vo a - ao] T where G is in _4×2. Thus, a quasi-LPV model of F-16

aircraft longitudinal axes is provided. The details of function substitution are written in Appendix B. To

compare simulation results of the nonlinear and the quasi-LPV model of the F-16 aircraft dynamics, several

time sets of inputs T and (_eare pre-defined. In this paper, one example of time simulations is presented for

space limitation. For example, inputs are set as

6_ = (_o, (4.6)

t"

T= _rolb, 0<t< 1, ll<t (4.7)

( To-20001b, l<t< llsec,

where 6_o and To is a trim value. The time simulation results in Figure 4.1 show that the time responses
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FIG. 4.1. Nonlinear vs. quasi-LPV model simulations

of the quasi-LPV and nonlinear models are almost matched to each other. Note that the quasi-LPV model

provided by the function substitution method may change depending on which one trim point is selected. It

is unknown how this affects the quasi-LPV model or the LPV control design.

5. LPV Control Problem Formulation.

5.1. Control Design Objectives and Weighting Functions. A formulation of the LPV control

synthesis of the F-16 longitudinal axes is presented in this section. The primary control objective for the

F-16 longitudinal flight controller is to track velocity and flight path angle commands within 1 ft/see and

0.6° error range in steady-state conditions.

Velocity and flight path angle tracking problems can be formulated as model matching problems in the

LPV control synthesis. In this paper, we consider the F-16 aircraft as an unmanned aircraft. The ideal

10



transfer function from the flight path angle command to the flight path angle measurement is modeled as

0.426(s + 1.5) with 0.8 rad/sec bandwidth and a right hand zero at -1.5 rad/sec.
a second order system, s2 + 1.6s + 0.64

For the velocity tracking problem, the ideal transfer function from the velocity command to the velocity

0.16 with 0.4 rad/sec natural fl'equency
measurement is modeled as the second order system s2 + 0.8s + 0.16

and critical damping.

v +

I> oises
I I i : w >cmd

FIG. 5.1. Interconnection structure ]'or the model matching problems.

A block diagram of the interconnection structure for synthesizing an LPV controller for the F-16 longi-

tudinal axes is shown in Figure 5.1. The velocity, angle rate and angle sensors are modeled as the first-order

low pass filters _,50 _'60 and _10 (see Ref. [1, 16]). In the LPV controller synthesis models,, the

sensor models shown in Figure 5.1 are approximated as:

10 ,,,
Sen = diag([1, 1, s_T_]) (5.1)

since the interesting frequency range for LPV control synthesis is less than 10 rad/sec. The reduced order

sensor models help to reduce the overall state order of an LPV controller, since the state order of an LPV

controller is same as that of the augmented open-loop system. The elevator actuator is modeled as the

first-order lag filter 20 and its rate limit is defined as 4- 60 deg/sec in Ref. [1, 16] Since the F-16 is a

fighter aircraft, we estimated the engine model as the first-order lag filter 4 which allows fast responses

in engine dynamics. The thrust rate limit is taken to be 10000 lb/sec. In the block diagram in Figure 5.1,

the actuator rate and actuator models are:

20s 20 4s 4
Act = diag([ ]) (5.2)

s+20' s+20' s+4' s+4 J'"

11



The performance weighting functions are chosen based on the desired performance objectives. The per-

formance weighting function of flight path angle Wp,, 100(s/100 + 1) 2 is derived based on the performance
(s/0.6+ 1) 2 '

objective to keep a 7 tracking error less than 0.6 ° for 1 radian command in steady state flight. Since the

bandwidth of the ideal model from the flight path angle command to the flight path angle measurement is

0.8 rad/sec, the roll off frequency of the weighting function is chosen as 0.6 rad/sec to specify the tracking

error less than 0.6 ° at the low frequency region (< 0.6 rad/sec). The performance weighting function for the

velocity, Wpv , s/200 + 1s + 1 , is derived to track velocity commands within 1 ft/sec error range in steady state

flight. The unmodeled dynamics are included in the multiplieative uncertainty models, l/_(,,_1 and _I(,_2.

The uncertainty weighting functions are rolled up in the mid-frequency range in order to limit the bandwidth

of the LPV controllers. The multiplicative uncertainty weight functions are set as

F[/_mu I = 0.01(s/0.35 + 1)
s/80 + 1 '

0.01(_/0.2 + 1)
s/50 + 1

The sensor noise models are taken as constant across frequency to reduce the state order of the LPV

controllers. The velocity, angle, and angle rate sensor noises are modeled as white noises with amplitudes of

0.8 ft/sec, 0.1 °, and 0.6 deg/sec, respectively.

To solve LMI equations (2.4)-(2.6), the basis function sets need to be defined for X and Y. There is

no analytical method to choose the best basis function set. Most often the basis functions used are power

series[7], Legendre polynomials[10], or atone functions of scheduling parameters [9]. Here, the basis function

set for X(p) and Y(p) is chosen as the first order power series {1, p} of the scheduling parameter of velocity

to reduce the computation time in the LPV control synthesis. Note that the basis functions of X and Y do

not have to be same.

5.2. Blending Two Controllers. In this section, synthesizing an LPV controller for the F-16 longi-

tudinal axes using the blending approach is demonstrated. To apply the blending approach for control of

the F-16, the entire parameter set (the flight envelope) is partitioned into two subsets: high and low altitude

regions. Parameter subsets are:

p_ - {(V,g, h)ll00 _<V _<900 ft/sec,

P_ - {(V,g, h)ll00 _<V _<900 ft/sec,

Pn _ Pl N P2.

-10<a<45 ° , 5000<h<30000St},

-10 < a < 45°, 10000 < h < 40000 _},

(5.3)

To use methods I and II, blending functions are required over the parameter subset T)N, which are satisfied

with the boundary conditions of equations (3.5)-(3.7). Blending functions b_ (h) and b2(h) are chosen as:

1, h-lO000b_(h) = 0.511+cos( _o_-_)],

I,o,

h < 10000 ft,

10000 < h < 30000 St,

30000 ft _ h,

(5.4)

and

bl(h) + b2(h) : 1. (5.5)

12



Using the blending functions, the solution matrices Xi and Yi are blended across the parameter subset 7)_

as:

xb(v, _, h) = bl(h)Xs(V, _) + a2(h)x2(_ ,), (5.6)

_(V,_,h) = bs(h)Yl(V, _) + a2(h)z2(_5_). (5.7)

Using method I, an LPV controller /¢_I is constructed with the solution matrices Xb and Yb using equa-

tions (2.8)-(2.11) over the entire parameter set Ps U 7)2.

Using the blending functions in equations (5.4)-(5.5) and the solution matrices Xs and I_ over the

parameter subset 7)s, the solution matrices )(2 and Y2 are determined solving the LMI optimization over the

parameter set 7)2 with the extra LMIs of equations (3.14)-(3.15) described in method II. An LPV controller

KH is constructed based on the calculated blended matrices Xb and Yb using equations (2.8)-(2.11) over the

entire parameter set.

To blend solution matrices Xi(V, a) and Y/(V, a) calculated over each parameter subset, the basis func-

tions for blending matrix functions of equations (3.18) and (3.19) are required to use method III. In this

paper, the basis function sets are chosen as {90, gl} for Xa_ and _, and as {/to, Its} for Xb2 and Yb2,

respectively.

1, h-lO000go(h) = o.511+cos( _o_a_-_)],

I,o,

h _< 10000 ft,

10000 < h < 30000 ft,

30000 ft <_ h,

(5.8)

0,

gs(h) = 0.1511 h-2oooo+ cos(lO_-_)],

O,

h _< 10000 ft,

10000 < h < 30000 ft,

30000 ft <_ h,

(5.9)

ho(h) =l-go(h), hs(h) =-gs(h). (5.10)

Note that it is not necessary to choose the same basis functions for Xb_ and Yb_. From the solution of the LMI

optimization of equation (3.21), the matrices Xb (V, a, h) and Yb ('_, ct, h) are calculated using equations (3.16)-

(3.19). An LPV controller KH_ is constructed from the matrices Xb(V, c_, h) and Yb(V, a, h) using equations

(2.8)-(2.11) over the entire parameter set.

For comparison, an LPV controller Ktot is constructed with solution matrices X and Y over the entire

parameter set using the conventional LPV controller synthesis approach. It takes approximately 43 hours on

933 MHz Pill machine running Linux. Using the blending methods I, II, and III, it takes approximately 22,

25, and 30 hours on the same machine, respectively. The computation time to synthesize the LPV controller

for the F-16 longitudinal axes is reduced using the blending approaches.

6. Nonlinear Simulations. The 12 state nonlinear F-16 aircraft dynamics [1] with the synthesized

LPV controllers, Ks, K2, Ktot, KI, KH, and KIII, are simulated to compare their time simulations in this

section. Recall that the LPV controllers Ks and /¢'2 are constructed over parameter subsets Ps and P2,

respectively. The LPV controller Ktot is synthesized over the entire parameter set, using the conventional

LPV control synthesis methodology. The LPV controllers KI, KH, and KHI are the blended controller

using the blending methods I, II, and Ill, respectively. In simulations, the LPV controller is implemented

13
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FIG. 6.1. Time simulations with the LPV controllers around 8000 ft altitude.

3O

15

using linear interpolation at the current values of the scheduling parameters between the grid point solutions.

The full state models of actuators and sensors are included in the nonlinear F-16 aircraft simulations.

Using these LPV controllers, the velocity and 7 step responses are simulated around 8000 ft and 32000

ft altitude, respectively. The step input sizes are a 10 ft/sec velocity command and a 5 ° 7 command at 1 sec.

The simulation results in Figure 6.1 show that all velocity and 7 measurements match the ideal responses

within 4-0.25 ft/sec and 0.06 ° tracking error. It is observed that these LPV controllers achieve the desired

performance objectives.

The LPV controllers K1, KI, KII, and KII1 are exactly equal to each other over the parameter subset

Ps - Pn, since the blending methods I, II, and III keep the regional LPV controller/_1 over the parameter

subset Sos - 5°N. The step responses of velocity and 7 with the LPV controller KIH in Figure 6.1 represent

the step responses with the LPV controllers Ks, Ki, and KH in the simulations around 8000 ft altitude.
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The actuator deflections and their rates of the time simulations are shown in Figure 6.1. It is noted that the

blended LPV controller KHI uses smaller actuator deflections and their rates than the LPV controller Ktot

does to achieve the performance objectives.
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FIG. 6.2. Time simulations with the LPV controllers around 32000 ]'t altitude.

The LPV controllers 1£2, KI, and KIII are exactly equal to each other over the parameter subset 1)2-/)n.

The blended LPV controller KII is different from/t'2 over the parameter subset/)2 -/)n, since in the method

II, the blended controller is constructed solving the LMI optimization of equations (2.3)-(2.6) with the extra

LMI constraints of equations (3.14)-(3.15). The step responses with the LPV controllers Ktot, KH_, and

KH are shown in Figure 6.2. It is observed that these LPV controllers achieve the desired performance

objectives over the parameter set/)2 -/)n- The simulation results show that the LPV controller Ktot uses

the largest actuator deflections and their rates to achieve the performance objectives.

For comparison, there is simulated one of candidate maneuvers that the F-16 aircraft flies from 15000 ft

15



to 32000 ft across the parameter subset ;Da, using 20 and 10 ft/sec velocity step and 10° 7 step commands.

Velocity, flight path angle, altitude, and angle of attack tittle responses with the LPV controllers Ktot, KIII,

KII, and K1 are shown in Figure 6.3. All the LPV controllers can achieve the performance objectives across

the parameter subset Pn. It is noticed that the velocity tracking performance with the blended controllers

is slightly better than the LPV controller h'tot designed over the entire parameter set Pl U P2 using the

conventional LPV controller synthesis methodology. The actuator deflections and their rates with the LPV

controllers are shown in Figure 6.4. The simulation results show that the blended controllers use much

smaller actuator deflections to track the velocity and 7 commands.
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FIG. 6.3. Time simulations with the LPV controllers ]'or the candidate maneuver.

Sensor noises are integrated into the F-16 aircraft simulations for the same situation of flying the F-16

aircraft from 15000 It, to 32000 ft. Sensor noises for pitch rate, velocity and pitch angle are set as white

noises with 4-0.5 deg/sec, 4- 0.8 ft/sec, and 4-0.1 ° atmplitudes. The simulation results are omitted for space
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FIo. 6.4. Actuator time responses with the LPV controllers ]'or the candidate maneuver.

limitations. The LPV controllers Ktot, KIII, [_II, and K1 stabilize the F-16 aircraft with the sensor noises

and achieve tracking performance objectives over the scheduling parameter variations. The thrust signal and

its rate do not exceed their limits: T < 19000 lb and IdTdtl < 10000 lb/sec. Also, the elevator actuator and

its rates do not exceed their limits: I_1 < 25° and id_l < 6o deg/sec. The blended controllers KH_ and K_dt

can preserve the performance level of the regional LPV controllers K1 and K2 over each parameter subset

_D1 and P2.

Note that method I requires the slow parameter-varying blending functions. In this example, the param-

eter intersection range is wide enough to provide the slow-varying blending functions for method I. When

the parameter intersection space is narrow, method III is appropriate to blend two LPV controllers over the

parameter intersection space.
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7. Summary and Discussion. In this paper, the methodologies of blending LPV controllers are

discussed to preserve the performance level over each parameter subset and to reduce computation time to

synthesize an LPV controller over the entire parameter set. The blending approaches are to design each

LPV controller for the set of a small number of scheduling parameters over the parameter subsets and blend

all controllers scheduled on the entire scheduling parameters using the blending functions.

The quasi-LPV model of the F-16 longitudinal axes is provided by a function substitution method over

the entire flight envelope to facilitate synthesis of an LPV controller. The two LPV controllers of the F-16

longitudinal axes are synthesized as functions of velocity and angle of attack at two regions: low and high

altitudes, respectively. The two LPV controllers are blended into a single LPV controller as functions of

velocity, angle of attack, and altitude over the entire flight envelope, using the three blending approaches. It

is noted from the nonlinear time simulations that the blended controllers achieve better performance than

the LPV controller constructed using the conventional LPV synthesis methodology. The blended controllers

constructed using methods I, II, and III achieve the performance objectives and stabilize the closed-loop

system of the F-16 aircraft with sensor noises.
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Appendix A. Nonlinear Equations of F-16 Longitudinal Axes. From nonlinear equations (4.1)-

(4.4), the nonlinear equations of the F-16 longitudinal axes are rewritten as follows:

where

A12,,[v]A22 (V, a, h) q

0 - 0o

+ M(VL a, h)u, + f(V, a),

 ll:A21:[:
As2(1, 1) = 2mV (Cx_ (a) cos a + Cz_ (a) sin a),

As2 (1, 2) = g(- cos a cos 0o - sin a sin 0o),

vse _ c (_) sin_ + Cz_(_)cos_),
As2(2,1) = 1 + _t- x_

&_(2,2) = g '
_7 (sin a cos 0o - cos a sin 0o),

(A.1)

A22 = _ yu 1 0J '

f =

[ _Cz(a) sin a + g(- cos a sin Oo + sin a cOSOo)]

_S Cz(a)cosa + -9- (sin a sin0o + cosacos0o)|Imv g

I wqT_SyACz(a)
io

[ o ]
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The gain matrix M is constructed as lookup tables and _u_ are synthetic inputs. The term of M(I/% o4 h)u,

can represent the following terms:

_s r-_ cos
F _[Oz_5_ sin oz + Cx (oz, a_)cos c_]-F _T]
/ _s __ sin O_/_ [c'_ a_cos_ - c_ (_,s_/sin4 - _ T[

m

[ 0 j
The detailed methods to determine M and synthetic inputs _u, are available in Ref. [14]. The synthetic

inputs can vary in the range of -1 _< ul _< 1 and 0 _< u2 _< 1. The units of _u] and u2 are 25 ° and 19000 lb,

respectively.

Appendix B. Decomposition. Set the state variables in a quasi-LPV model of the F-16 aircraft

dynamics as V - 17o, c_ - C_o, q - qo and 0 - 0o, where l/o, So, qo and 0o represent a trim point. Then,

equation (A.1) is rewritten as

[i:]
where

= fAll,Z,I fBl, , LA21(a) A22(z)J Wo LB_(_)j _,o,

and

_1 = Z -- Zo, _2 = W - Wo, _ = us - Uo, (B.2)

z= [V c_]r, w = [q O]r. (B.3)

To provide a quasi-LPV model of F-16 aircraft dynamics from equation (B.1), the term F(z) should be

decomposed into linear parameter varying functions written as

]_(Z):lg(Zo-F_I): F ga(Z° -F _1) ]

Lgw(Zo+ [l)J _*' (B.4)

where 9_ C T( >×2 and gw C T_ 2×2. There are an infinite number of possible solutions of g_ and 9w to satisfy

equation (B.4). To determine functions ga and gu,, more constraints are required. In this paper, the variation

of g_ and g_, over the entire flight envelope is minimized. With these constraints, an optimization problem is

formulated to determine g_ and 9_- For example, to determine the first row of g:, an optimization problem

is follows:

subject to

min e, (B.5)
gz11 E_,gz12 E_"

FI(ZoJF{1) ---- [g%11(_oJF{1) gg12(ZOJF{1)]_1

02g$11(_O Jr- _1) a2g_l_(Z° + {_)1

(B.6)

2o



whereF1 is the first row of F. To make the optimization problem of equation (B.5) computationally tractable,

the continuous constraints are evaluated at grid points over the parameter set. Thus, the matrix g_ can be

determined at every grid point of _1. Using solutions of the optimization for g_ and gw, a quasi-LPV model

of F-16 longitudinal axes is written as:

[i]v  [:lv= [A,I(V,.) +g_(V,_) A,2(V,_,h)
[&_(V,_) +_w(_) A2_(V,_,h) q(_O

- OoJ

+ _(_4,_, h)(_ - _..). (B.7)
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